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Featured Application: The VAE-based stimulus continuum generation approach can be used1

in speech perception studies to generate smoother and more gradual transitions between two2

endpoint reference stimuli.3

Abstract: Creating stimuli for studies on the categorical perception of speech sounds involves4

manual manipulation of acoustic parameters (e.g., pitch contours for lexical tone perception,5

formant frequencies for /r, l/ perception) extracted from spoken words. Difficulties arise when6

manipulated parameters need to be gradual and smooth transitions between two reference con-7

ditions. Furthermore, manually interpolating between endpoint parameter values may lead to8

unnatural sounding re-synthesized stimuli. Recent studies have demonstrated the effectiveness of9

deep probabilistic generative models for generating meaningful samples based on embeddings10

created by performing linear interpolation in latent space. Our work bridges stimulus continuum11

generation and state-of-the-art deep learning (DL) techniques. We propose a data-driven approach12

to stimulus continuum generation based on Variational Autoencoders (VAEs). The unsupervised13

neural network maps the high-level acoustic features into low-dimensional representations that14

follow a normal distribution. This allows to traverse between two known locations in latent15

space and produce desired perceptual characteristics. We illustrated this approach in two case16

studies on syntheses of tone continuum and /ü/-/l/ continuum in Mandarin Chinese. Analyses17

of reconstruction error and subjective evaluations (i.e., identification test and mean opinion score18

(MOS)) show that our proposed method slightly improves the naturalness of stimulus samples.19

Keywords: speech synthesis; variational autoencoders; fundamental frequency; acoustic parame-20

ters; continuum21

1. Introduction22

In speech perception studies, stimulus continua (i.e., several sets of artificially23

generated stimuli varying along a specific dimension between two given categories) are24

often used as experimental materials to probe human speech perception mechanisms.25

The quality of a synthetic stimulus continuum has a particularly significant impact26

on the result of perceptual experiments. A common approach is to manually modify27

the key acoustic parameters of natural speech sounds, which is time-consuming and28

laborious. For example, in perception experiments of lexical tones [1,2], phonemic29

categories (e.g., the perception of English liquid consonants /r, l/ by Japanese learners30

[3,4]), and physiological characteristics (e.g., voice gender perception [5]), the synthesis of31

perceptual stimuli usually includes three steps: (i) extract relevant acoustic parameters32

from spoken utterances; (ii) perform interpolation operations between the relevant33

acoustic parameters based on mathematical formulas; (iii) use a vocoder to convert34

parameter sequences obtained by interpolation back to the speech signal. Although this35

method has been widely used in perceptual experiments and proven effective, it has36

several crucial limitations. First, it is difficult to achieve a global and smooth transition37
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between two endpoint stimuli by directly operating on key acoustic cues [6]. Chances38

are that the resulting stimulus set sounds unnatural when the reference conditions differ39

in several acoustic dimensions (e.g., /r/ and /l/ differ in first, second and third formant40

frequencies [3]). Second, since acoustic parameters are continuous physical variables,41

directly performing interpolation by hand for key acoustic features may mask subtle42

but important dynamic variations that are used as discriminative clues by listeners, and43

none of these clues will appear in the ensuing perception experiment [7].44

Recently, generative modeling has demonstrated the potential to become an im-45

portant tool for exploring the parallels between perceptual, physical, and physiological46

representations in fields such as psychology, linguistics, and neuroscience [8–10]. In47

this study, we propose a new method for creating a series of stimuli for categorical48

perception experiments. This is a data-driven approach based on VAEs [11] to model the49

generative process of the key acoustic feature of original signals. The VAE is a generative50

model based on a regularized version of the standard autoencoder (AE). The AE is an51

unsupervised modeling approach that compresses the data (original space) into low52

dimensional variables (latent space) while attempting to preserve as much information53

as possible. This means that given a set of acoustic features, like f0 contours, one can54

obtain a compact description of variations in the whole curve set in the latent space.55

In addition, VAE puts a constraint on the latent space, so that the original data is not56

encoded by a single point, but a standard normal distribution over the latent space.57

The advantage of this method is that the learned model has the ability to generate new58

samples, which may not exist in the original data. Figure 1 illustrates the idea behind59

our approach intuitively: Input A and Input B are the two samples in the original data60

(in our case studies, they correspond to f0 contours or vocal tract parameters extracted61

from monosyllabic words), and the two gradient circles below (Distribution A and62

Distribution B) are the normal distributions encoded in the latent space. The intuition is63

that when the point we sampled is closer to the center of the distribution, the sample64

reconstructed is more similar to the original data.65

Interpretable representation learning in the latent space has been extensively in-66

vestigated for a variety of tasks. [12] has examined the effects of latent space inter-class67

sampling data augmentation on image classification. [13,14] have demonstrated how68

to do image transformation via latent space interpolation. Latent space interpolation69

has also been successfully used in music applications [15–17]. Moreover, [18,19] have70

successfully applied the VAE to the task of modeling and transforming frame-wise71

spectral envelopes and spectrograms via sampling from the latent space. However,72

despite considerable attention devoted to modeling natural speech and interpreting73

learned representations from the latent space, relatively few studies have attempted74

to introduce these advanced DL models to address questions of interest in the field of75

speech perception.76

This study proposes a data-driven approach to stimulus continuum generation77

based on VAEs. There are three major contributions in this paper. First, our work78

bridges stimulus continuum generation and state-of-the-art DL techniques by applying79

a data-driven approach (VAEs) to stimulus continuum generation. Second, instead of80

directly performing manipulation on key acoustic cues, our proposed approach performs81

resampling after learning the distributions of key acoustic features, which avoids possible82

information loss and problems of unnaturalness caused by manual interpolation. Third,83

we conduct two case studies on tone continuum generation and /ü/-/l/ continuum84

generation and the results prove the effectiveness of our method.85

2. Related work86

2.1. Variational Autoencoders87

A VAE [11] is a generative model based on a regularized version of the standard88

autoencoder (AE). An AE is a form of the deep neural network built to learn a bottleneck89

for data that ensures only the main structured part of the information can go through90
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Figure 1. A schematic illustration of the latent space of VAE. Solid lines represent encoding and
dashed lines represent decoding.

and be reconstructed. The generic AE architecture comprises an encoder that receives91

the input signal and transforms it through a bottleneck layer to a latent low-dimensional92

representation (i.e., the latent code) and a decoder that regenerates the input signal from93

the latent representation.94

However, AEs are not generative models [20] since they do not model the joint95

probability of the observable and target variables. In order to enable AEs to have the96

generative ability in the latent space, [11] proceeded to a slight modification of the97

encoding-decoding process: instead of encoding an input as a single point, they encoded98

it as a distribution over the latent space by variational inference. The architecture of a99

VAE model is shown in Figure 2(a). A variational encoder maps an input vector x into a100

latent space representation z using an encoder neural network with parameters φ that101

outputs qφ(z|x), i.e., a probability distribution of the hidden representation conditioned102

on the input. In fact, qφ(z|x) is an approximation of the intractable true posterior pθ(z|x),103

which takes a multivariate Gaussian form with a diagonal covariance matrix, i.e., for a104

given input data point x:105

qφ(z|x) = N (z; µx, σx) (1)

Thus the output of the encoder network, for a given input x is a vector of N means106

and N variances, where N is the chosen dimension of the latent space representation z.107

We can then sample the posterior distribution using the reparametrisation trick:108

z = µx + σx ◦ ε , whereε ∼ N (0, 1). (2)

The obtained sample can then be passed through the decoder neural network with109

parameter θ, which models pθ(x|z), and outputs an approximation of the original input110

vector x. The parameters of the encoder and decoder networks φ and θ are trained using111

backpropagation and gradient descent so that the VAE reproduces its input as close as112

possible. As a by-product of this process, the VAE learns the qφ(z|x), structuring the113

latent space representation.114

2.2. Sequential modeling with gated CNN115

Gated CNN [21] is a non-recurrent approach that is competitive with strong re-116

current models on these large-scale language tasks. Several gating mechanisms have117

been explored in modern convolutional architectures for sequential modeling [22,23].118

Parallel to our work, to capture long- and short-term dependencies in f0 contours and119

spectral envelopes, we use a gated CNN [21] to construct both the encoder and decoder120

networks of the VAE. Having linear units coupled to the gates reduces the vanishing121

gradient problem. This retains the non-linear capabilities of the layer while allowing122

the gradient to propagate through the linear unit without scaling. The output of the lth123
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Figure 2. (a) A VAE architecture. Input x represents a key acoustic feature and x′ is the reconstructed feature. The model is trained
as follows: first, the input x is encoded as distribution x ∼ (µx, σx) over the latent space; second, a point z from the latent space is
sampled from that distribution; third, the sampled point x′ is decoded and the reconstruction loss and KL loss can be computed; finally,
the total loss is backpropagated through the network. (b) Gated CNN used in encoder and decoder.

hidden layer of a gated CNN is described as a linear projection Hl−1 ∗Wl + bl modulated124

by an output gate tanh(Hl−1 ∗Vl + cl) (as shown in Figure 2(b))125

Hl = (Hl−1 ∗Wl + bl)⊗ tanh(Hl−1 ∗Vl + cl) (3)

where Wl , Vl , bl and cl are the network parameters to be trainedand ⊗ indicates126

the element-wise product. Here, the input to the 1st layer is H0 = x for the encoder127

and H0 = z for the decoder whereas the output from the lth layer is Hl = [µz; σz] for the128

encoder and Hl = [µx] for the decoder. Similar to LSTMs, the output gate multiplies129

each element of Hl−1 ∗Wl + bl and controls what information should be propagated130

through the hierarchy of layers in a data-driven manner.131

3. Experiments132

Two sets of comparison experiments were conducted to synthesize the lexical tone133

continuum and the /ü/-/l/ continuum, using our proposed approach based on the VAE134

and the traditional approach based on signal processing respectively.135

3.1. The VAE approach136

3.1.1. Dataset137

The data for this study were based on recordings taken from the BLCU-SAIT speech138

corpus [24]. The corpus consists of both native and nonnative speech with monosyllabic139

and disyllabic words and multi-syllabic sentences. We selected the single-syllable speech140

data produced by a female native speaker, totaling 1520 monosyllabic words that cover141

all possible tones and initials in Mandarin.142

3.1.2. Data preprocessing143

The WORLD analyzer [25] was used to extract the required acoustic features.144

WORLD is a real-time processing analyzer consisting of three algorithms for obtaining145

three speech parameters, i.e., fundamental frequencies ( f0s), spectral envelopes (SPs)146

and aperiodic parameters (APs). As shown in classical speech perception studies, f0 is147

the primary acoustic cue to lexical tones; therefore f0 values were extracted for tonal148

continuum synthesis experiments. Similarly, we used the SP as another acoustic fea-149

ture to carry out experiments on continuum synthesis of vocal tract parameters. The150

original speech recordings were downsampled to 22.05 kHz. Pitch parameters were151

set at a minimum of 50 Hz, a maximum of 600 Hz and the frame shift was 5 ms in the152

WORLD analyzer for f0 extraction. We extracted 34 Mel-cepstral coefficients (MCEPs),153

fundamental frequency ( f0), and aperiodicities (APs) using the WORLD analyzer. As a154

pre-processing step, the extracted f0 contours and MCEPs were normalized so that they155
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ranged from -1 to 1. The detailed spectral analysis and synthesis settings were the same156

as in the previous work [27].157

3.1.3. Training configuration158

The deep learning toolkit used in this work is Pytorch [28]. The model was trained159

with the Adam optimizer and the initial learning rate was set to 0.001. All configurations160

were trained for a maximum of 20000 iterations with a batch size of 64 spoken words.161

Following the usual practice [27], we randomly cropped a segment (80 frames) from162

a randomly selected word instead of using the whole word directly, so as to increase163

the randomness of training data. Table 1 and Table 2 provide details of the network164

architectures of our proposed model for speaking voice pitch contours ( f0s) and spectral165

envelopes (SPs).166

Layer channel Stride×Kernel GLU

Input 1 - -
Cov1d 32 1× 61 GLU
Cov1d 16 1× 21 GLU
Cov1d 8 1× 5 GLU
Latent 1 - -
Cov1d 32 1× 1 GLU
Cov1d 16 1× 21 GLU
Cov1d 8 1× 5 GLU
Output 1 - -

Table 1: VAE architecture to model the generative process of f0. Conv1d refers to the
1D convolutional layer. Latent refers to the Gaussian parametric layer modeling z. GLU
refers to gated linear unit.

Layer channel Stride×Kernel GLU

Input 1 - -
Cov2d 128 (1, 1)× (5, 9) GLU
Cov2d 256 (2, 2)× (5, 5) GLU
Cov2d 128 (2, 2)× (5, 5) GLU
Latent 1 - -
Cov2d 128 (1, 1)× (1, 1) GLU
Cov2d 256 (2, 2)× (5, 5) GLU
Cov2d 128 (2, 2)× (5, 5) GLU
Output 1 - -

Table 2: VAE architecture to model the generative process of SPs. Conv2d refers to the
2D convolutional layer.

3.1.4. Stimulus continuum generation167

Stimulus continuum generation with VAE contains two phases: the training phase168

and the generation phase. Here we conducted tone continuum generation and /ü/-/l/169

continuum generation experiments using related acoustic features ( f0 and SP respec-170

tively) to demonstrate the effectiveness of our proposed approach.171

3.1.5. Tone continuum generation172

In the training phase, we trained a VAE framework on the extracted f0 dataset173

(details in 3.1.2) to model the probabilistic generation process of fundamental frequencies.174

This process was done on a single Tesla K40c GPU, which took around an hour. Using175

the trained VAE model, we can generate a pitch continuum between any two reference176
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conditions. To prove the effectiveness of our approach, we took Chinese monosyllables177

/a1/ and /a2/ as the endpoint stimuli to create a 9-interval lexical tone continuum.178

In the generation phase, due to differences in duration of two spoken words, we did179

time normalization using PSOLA [29]. Similar to the training phase, we extracted the180

f0s, SPs and APs from the recordings of /a1/ and /a2/ using the WORLD analyzer [25]181

and normalized the two f0 contours to -1 and 1. Second, we sent the two preprocessed182

f0 contours to the encoder of the VAE for f0 and obtained two latent representations183

(normal distribution) of the original data. Third, we sampled latent representations184

equidistantly between the two reference distributions according to equation 4,185

ẑ = α ∗ z1 + (1− α) ∗ z2 (4)

where α is an interval between [0, 1] and ẑ refers to the latent representation which186

can walk in the continuous latent space when the parameter α is changing from 0 to 1.187

The interpolation code ẑ is fed into the decoder of the trained VAE model, which outputs188

smooth transitions between the two original inputs. Finally, we used the WORLD189

analyzer [25] to apply the new f0 contours to the speech signals and obtained equidistant190

pairs of stimuli along the pitch continuum.191

3.1.6. /ü/-/l/ continuum generation192

Since pitch is a suprasegmental acoustic feature, in order to show that our approach193

to continuum generation is also applicable to segmental features, /ü/-/l/ continuum194

generation experiment was performed using vocal tract parameters. In the training195

phase, we trained a VAE framework on the extracted SPs’ dataset (details in 3.1.2) to196

model the generation process of vocal tract parameters. To prove the effectiveness of197

our approach, we created a /ü/-/l/ continuum between two Chinese monosyllables198

/re1/ and /le1/ as a case study. In the generation phase, all the steps were similar to the199

tone continuum generation, except that the acoustic parameters were spectral envelopes200

instead of f0 contours.201

3.2. Traditional approach: manual manipulation202

For comparison, we referred to the common continuum stimulus synthesis method203

adopted in most of the classical speech perception studies [2,26]. The standard proce-204

dures of synthesizing the stimuli are: (1) adjusting the duration of the target syllables to205

400 ms, (2) extracting the f0, SP and AP parameters from two given speech signals using206

the WORLD analyzer, (3) reducing the number of pitch points to 10, with one at the207

starting position, one at the ending position, and eight intermediate points selected in208

equal steps, (4) synthesizing various stimuli by manually adjusting the above ten points.209

As in the deep learning approach, the same target syllables were used as the210

reference stimuli for tone continuum generation and /ü/-/l/ continuum generation.211

4. Results and Discussion212

4.1. Objective evaluation: reconstruction error213

Figure 3 shows the reconstruction of the latent representations of four lexical tones214

in Mandarin using the trained VAE. The generated f0 contours seem to have almost the215

same shape compared to the original data. It can also be observed that the generated f0216

contours preserve the subtle variations in the original f0 contours.217



Version November 16, 2021 submitted to Journal Not Specified 7 of 11

Frame Frame Frame Frame

(a) (b) (c) (d)

Figure 3. F0 contours extracted from the original data (dashed blue line), and f0 contours extracted
from the reconstructed data (solid red line) obtained using our proposed generative model.

Figure 4 shows f0 contours of the tone1-tone2 continuum. The pitch contours218

obtained by resampling in the latent space of the VAE have a smoother and more219

gradual transition between the two reference contours than those generated by the220

manual approach.221

(a) (b)

Figure 4. (a) f0 contours of the tone1-tone2 continuum obtained by the traditional approach. (b)
f0 contours of the tone1-tone2 continuum obtained by resampling in the latent space of the trained
VAE.

Figure 5 provides examples of the mel-spectrograms of training data and recon-222

structed data. The generated data were obtained using the VAE, which was trained223

with spectral envelopes. It can be seen that the reconstructed /re1/ and /le1/ preserve224

fine-grained details of spectral envelopes.225

(a) (b)

Figure 5. (a) the left subplot: original /re1/; the right subplot: reconstructed /re1/. (b) the left
subplot: original /le1/; the right subplot: reconstructed /le1/.

Figure 6 illustrates the difference between the data-driven approach and manual226

manipulation of vocal tract parameters for stimulus continuum generation. It is notice-227

able that some tiny details between formant frequencies (green arrows in Figure 6) are228
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Figure 6. The top subplot shows mel-spectrograms of the /ü/-/l/ continuum obtained by manual manipulation; The bottom subplot
shows mel-spectrograms of the /ü/-/l/ continuum obtained by resampling in the latent space.

obscured in the top mel-spectrograms, while this information is preserved in the bottom229

mel-spectrograms.230

4.2. Subjective evaluation231

Stimulus samples (9-interval tone1-tone2 continuum along the pitch dimension and232

/ü/-/l/ continuum along the vocal tract parameter dimension) were generated using233

our proposed method and manual manipulation. The subjective evaluation experiments234

were carried out via an online platform for behavioral research.235

4.2.1. Identification test236

To compare our proposed data-driven approach with the traditional method of237

directly adjusting the acoustic parameters, an identification experiment was conducted238

to explore whether differences exist in categorical boundary position and width using the239

stimulus continua created by these two techniques. Subjects were eight native speakers240

of Mandarin Chinese with a Mandarin level above 2A (Eight subjects participated in the241

tone1-tone2 perception study, and five of them participated in the /ü/-/l/ perception242

study). At the beginning of the test, two reference sounds (coded as "Sound 1" and243

"Sound 2" respectively) were played two times to participants, and they were instructed244

to familiarise themselves with the two representative sounds as best as possible. The245

stimulus samples of each continuum were presented to the participants randomly.246

Subjects were asked to press key "1" when they thought the sound was "Sound 1" or247

to press key "2" when they thought they had heard "Sound 2". The ten stimuli were248

played randomly in a block. There were five such testing blocks for each continuum249

generated by the two methods. Identification curves for the tone1-tone2 continuum250

and the /ü/-/l/ continuum are shown in Figure 7. The two curves show somewhat251

similar trends, especially for the tone1-tone2 continuum perception case. However, some252

subtle differences deserve further exploration. For example, for the /ü/-/l/ continuum253

perception case, the category boundary is closer to the middle stimulus when the stimuli254

generated by our VAE-based approach are used for the test. Also, there is a longer and255

more gradual curve for the transition part. One possible explanation is that transitions256

generated by the proposed method are smoother and more gradual. However, these257

patterns are not apparent in the tone1-tone2 example.258
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Figure 7. Identification curves pooled across participants. (a) Perception of the tone1-tone2
continuum. (b) Perception of the /ü/-/l/ continuum.

4.2.2. MOS evaluation259

The overall quality of the stimulus samples generated by these two methods was260

evaluated using the mean opinion score (MOS). Eight native speakers of Mandarin261

Chinese were recruited, and none of them had participated in the previous experiment.262

Listeners were asked to rate the overall naturalness of the stimulus samples on a scale263

from 1 and 5. A total of 80 voice stimuli (8 continua) were mixed and presented to264

listeners in a randomized order. Based on the identification results, generated sounds265

were divided into within-category stimuli and between-category stimuli. For the tone266

continuum, the third to seventh stimuli were viewed as between-category. For the267

/ü/-/l/ continuum, the fourth and fifth stimuli were regarded as between-category. In268

accordance with this classification, the overall MOS, within-category MOS and between-269

category MOS were calculated. Tabel 3 summarizes the results of listeners’ evaluation of270

the synthesized stimuli.271

Table 3: MOS of stimulus samples

System MOS (overall) MOS (within category) MOS (between category)

tone1-tone2 continuum (Manual) 3.81 4.21 3.32
tone1-tone2 continuum (VAE) 3.92 4.18 3.47
/ü/-/l/ continuum (Manual) 3.97 4.20 3.78

/ü/-/l/ continuum (VAE) 4.06 4.25 3.89

Pairwise comparisons using the paired Mann-Whitney U Tests [30] show that272

between-group differences in overall MOS are not significant (p > 0.05). This suggests273

that generally speaking, the quality of generated stimuli using the data-driven approach274

is comparable to that of the manual manipulation approach. Notably, the between-275

category MOS of the tone1-tone2 continuum and the between-category MOS of the276

/ü/-/l/ continuum based on the VAE model are slightly higher. These results indicate277

that both approaches can generate relatively natural stimulus samples with acceptable278

sound quality, but for those stimuli near the category boundary, the VAE-based method279

slightly improves the naturalness of generated speech over the manual manipulation280

baseline.281

5. Conclusions282

In this paper, we proposed a data-driven approach to generate stimulus continua283

based on VAEs. This work bridges the gap between stimulus continuum generation284

and state-of-the-art DL techniques. We used fundamental frequencies and vocal tract285

parameters to conduct stimulus continuum synthesis experiments using our proposed286

model. The results indicated that the proposed method can generate smoother and more287
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gradual transitions between two endpoint reference stimuli, and yield more natural288

between-category stimuli compared to manual manipulation on the key acoustic feature.289

Future directions include disentangling key acoustic features instead of using290

vocoders for feature extraction, and modeling on mel-spectrograms instead of directly291

modeling the acoustic features. In addition, we will experiment with using recurrent292

neural network architecture as the encoder to model speech sounds, so as to avoid293

possible information loss or distortion caused by time normalization. We will also294

try expanding the scale of perception experiments in order to obtain more convincing295

results. In addition to the perceptual experiments conducted in the current study, using296

other perceptual metrics, e.g., the perceptual evaluation of speech quality (PESQ) to297

compute the perceptual distance between intermediate stimuli is also a possible solution298

to evaluate the proposed approach.299
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